
NASA-TM-|I|_75

Localized Search for

Controlling Automated Reasoning

AMY L. LANSKY

AI RESEARCH BRANCH, MAIL STOP 244-17

NASA AMES RESEARCH CENTER

MOFFETT FIELD, CA 94035

__A Ames Research Center

Artificial Intelligence Research Branch

Technical Report FIA-90-08-15-01

August_ 1990

Localized Search

for
Controlling Automated Reasoning

Amy L. Lansky

Sterling Software/NASA Ames Research Center

Artificial Intelligence Research Branch

MS 244-17, Moi_ett Field, CA 94035 USA

LANSKY@PLUTO. ARC. NASA. GOV

August 15, 1990

Abstract

This paper describes the localized search mechanism of the GEMPLAN multiagent plan-

ner. Both formal complexity results and empirical results are provided, demonstrating the

benefits of localized search. Localized search utilizes an explicit domain decomposition

to infer constraint localization semantics and, as a result, to enable the decomposition of

the planning search space into a set of spaces, one for each domain region. Each search

tree is concerned with the construction of a region plan that satisfies regional constraints.

Shifts between search trees are guided by potential regional interactions as defined by the

domain's structure. The search algorithm must also ensure that all search trees are con-

sistent, which is especially dii_icult in the case of regional overlap. Benefits of localization

include a smaller and cheaper overall search space as well as heuristic guidance in con-

trolling search. Such benefits are critical if current planning technologies are to be scaled

up to large, complex domains. Indeed, the use of domain localization and localized search

are broadly applicable techniques that can be used by many kinds of domain reasoning

systems, not just planners.

A slightly shortened version of this paper was submitted to the 1990 DARPA Planning Workshop, San

Diego, California, November 1990. This research has been made possible in part by the National Science

Foundation, under Grant IRI-8715972.

Contents

1 Introduction

2 GEMPLAN Overview

2.1 Search Space Decomposition

2.2 Regions

2.3 Region Search Trees

2.4 Plan Representation

2.5 Guiding Search Among Regional Trees

2.6 Dealing With Regional Overlap

3 Example

4 Localized Search Algorithm

5 Complexity Analysis

6 Empirical Results

7 Conclusion

3

5

7

8

8

9

9

11

11

13

16

19

21

2

1 Introduction

By now, the algorithmic complexity of domain-independent planning has become well

known [2].Many planning researchershave given up completely on pre-planning frame-

works, opting, instead,for more reactiveaction-generationstrategies.Yet, there are many

domains for which purely reactive approaches are inadequate. Imagine, for example, a

factory shop floorin which people coordinate their activitiessimply by dynamically "re-

acting" to one another. The shop floor would soon become a mess. Some amount of

pre-planuing isnecessary for domains that require complex coordination of activities,espe-

ciallywhen adherence to coordination constraintsis critical.Such domains are numerous

and include NASA mission planningI, building-constructionplanning, factory planning,

and other forms of organizationalplanning and coordination. Given the inescapable need

for reasoning about large complex plans, the planning community faces two related ob-

stacles:(1) the inherent costlinessof plan construction algorithms and (2) the problem of

scalingplanning systems up to large domains. Indeed, these obstaclespose problems for

any form of planning, whether itisperformed before or during execution.

The focus of thispaper is the use of local{ty- the inherent structuralpropertiesof a

domain -- to control the explosivecost of planning and other forms of reasoning. The use

oflocalizedreasoning, while quiteintuitiveand natural,has not been a fundamental aspect

of most AI systems. A localizeddomain descriptionisone that is explicitlydecomposed

into a set of regions. Each region may be viewed as a subset of domain activitywith an

associated set of "constraints" (properties,goals,or other requirements that the planner

must fulfill)that are applicableonly to the activitieswithin the region. We referto this

delineationof constraintapplicabilityas constraintlocalization.Localizedplanning consists

of searching a set of smaller, regional planning search spaces rather than a large, "global"

space. Each GEMPLAN search space may be visualized as a regional plan-construction

search tree, where each tree node is associated with a region plan and each arc is associated

with a plan modification that transforms the preceding plan into a new plan (with new

actions, relationships, etc.) that satisfies the constraint.

The GEMPLAN domain representation allows for the specification of any kind of do-

main decomposition, including the use of regions that overlap, are disjoint, are organized

hierarchically, or form any combination thereof. Criteria for decomposition are usually

suggested by the innate characteristics of a domain, such as its physical structure, its

behavioral entities (agents), and its functional elements. Indeed, it is often useful to uti-

lize a decomposition that reflects several criteria simultaneously. Consider, for example,

a building-construction domain. Viewed globally, the domain may be described by a set

of constraints, some of which describe the actual structure and requirements for a specific

building, some that encode the requirements and capabilities of contractors and physi-

1Throughout the rest of this paper, the term "planning" will be used rather than "planning and schedul-

ing." However, most of the discussion is equally applicable to the more specialized area of scheduling.

ca] resources, some that describe accepted construction "rules of thumb," and some that

describe the inherent limitations imposed by domain physics. Clearly, many of these con-

straints apply only to a subset of the full set of construction activities to be planned. One

way to naturally decompose the domain is according to the physical structure of the build-

ing - e.g., to utilize separate regions to model each floor or room, along with its associated

constraints. Other regions could model the individual contractors and their constraints.

Figure 1 depicts a possible decomposition for a small construction domain.

The primary goal of domain localization is to cluster activities into regions so that

constraints are applied as narrowly as possible. The actual decomposition chosen will be

used to infer the exact scope of applicability of domain constraints - i.e., each region's

constraints apply only to the activities within that region. As we will show, different

localization decompositions will incur different planning costs. While most of our empirical

tests to date have utilized user-provided decompositions, we are currently developing an

algorithm for automatically learning a good decomposition for a particular domain as well

as more general decompositional strategies. This work bears some similarity to Knoblock's

learning of domain abstractions [5].

The use of localized reasoning has several benefts. From a representational point of

view, locality provides a solution to some aspects of the frame problem; constraint localiza-

tion may be viewed as a frame rule which limits the effect of actions and properties upon

one another [4,7,8]. Most important, however, locality provides a rationale for partition-

ing a potentially explosive global planning space into a set of smaller, localized planning

spaces. This has three interrelated benefits: (1) both the size and cost of the union of

a set of localized planning spaces is usually smaller than that of a global, non-localized

space; (2) expensive planning algorithms need be applied to much smaller regional plans;

and (3) since a localized domain description provides information about how constraints

and activities interact, it serves as a heuristic for constraint application. In particular, only

relevant (regional) constraints are applied to regional plans and movement between regional

search trees occurs only when region actions and constraints interact. All of these factors

clearly facilitate scaling up to large domains. Other planning researchers have looked at

methods of problem decomposition in order to reduce search complexity [1,6], but they

have focused primarily on goal reduction and operator reformulation rather than search

space decomposition. In many ways, localization can be viewed as an extremely general

decompositional method, that can be used to capture both abstraction and the separability

of domain properties.

It should be pointed out that domain localization is applicable to any kind of domain

reasoning that can be effectively partitioned. For example, localized reasoning could be

used by single-agent planners, reactive systems, schedulers, truth maintenance systems,

learning as proble173 TD

-425 -17

(extremely) Tj 5 TD 3

already utifize heuristics that are provided by domain structure. The localized search

algorithm described in this paper could thus be applied to many kinds of reasoning systems.

However, we do stress multiagent domains here for two reasons: (1) the complexity of

coordinating multiagent domains makes localization even more necessary; (2) multiagent

domains are typically easy to decompose.

Of course, the benefits of localized search do have a price. Most realistic domains cannot

be partitioned into simple hierarchies or disjoint regions. Domains of any complexity will

have regions that "overlap" - that is, some subregions will be shared by more than one

encompassing region. For example, in Figure 1, regions wallA, e-control, and p-control each

belong to more than one region. This complicates the localized search algorithm because

changes within a shared region must be reflected within the search trees of all its ancestors.

That is, localized search must pay attention to the problem of interaction and consistency

among search trees.

In addition, constraint localization will yield large gains only if a domain can be effec-

tively decomposed. If many constraints naturally belong to a region that includes a great

deal of domain activity, search will remain quite expensive. To gain real efficiency benefits,

regions which may seem intuitively "global" should be composed to include only a minimal

amount of activity. For example, in Figure 1, the general contractor's constraints apply

only to his/her own activities in gc-contro], those in e-control (electrician control activi-

ties), and those in p-control (plumber control activities), not to all activities in electrician

and plumber. Experience thus far with GEMPLAN (and commonsense intuition about the

structure and function of large organizations) indicates that effective localization is natural

to obtain for many domains.

2 GEMPLAN Overview

GEMPLAN is a planner designed explicitly for multiagent domains that require complex

coordination. The current GEMPLAN system is implemented in Prolog on a Sun work-

station and has been applied to several test domains: multiagent blocks-world problems,

the Tower of Hanoi, and a construction domain. The system includes an execution facility,

and has the ability to apply constraints before or during execution. It may thus be viewed

as a combined pre-planner/dynamic-planner. While the existing system is primarily de-

signed for pre-planning, we have begun implementation of a next-generation GEMPLAN

system that spans the pre-planning/dynamic-planning spectrum in a seamless fashion. Our

current target applications include large construction domains and data-analysis planning

for NASA's Earth Observing System (EOS). GEMPLAN differs from standard hierarchical

planners [12,13J in several ways:

ontrol
an plumber "_

e-coo,,o \
wallB wallA wallC

p-control

gc (general contractor)

, V-I

elec

Figure 1: A Localized Construction Domain Description

r, GEMPLAN partitions the global search space into localized search spaces.

r, GEMPLAN has a highly flexible, tailorable search mechanism. In particular, constraint

application can be guided by user-supplied heuristics and by the changing planning and/or

execution context, as it develops.

c, GEMPLAN has the ability to satisfy a broad range of domain "constraint forms," not

simply the attainment and maintenance of state conditions (the traditional notion of

"planning"). Note that we are using the term "constraint" in a very broad sense - i.e.,

to label any sort of property that the planner knows how to test and to make true. The

system includes a set of general-purpose constraint satisfaction algorithms for partially-

ordered plans, which may be further augmented by user-supplied constraint-satisfaction

methods. The default constraint algorithms are fully general - they allow for the addi-

tion of and reasoning about any possible temporal relationship between actions, including

simultaneity. It is these constraint satisfaction algorithms that perform the task of plan

construction and coordination, by introducing actions, action interrelationships, and vari-

able bindings. The current constraint repertoire includes:

• The attainment and maintenance of goal conditions and preconditions - i.e., the

traditional "planning algorithm." Actions may be defined to have conditional effects.

The algorithm also includes full protection capabilities.

6

• Action decomposition (i.e., action hierarchies). GEMPLAN allows for reasoning

about actions at mixed levels of detail, rather than confining itself to reasoning "one

level at a time," as do some hierarchical planners [13]. Indeed, rather than being

inextricably bound to the planner's search structure (hiearchical or otherwise), action

decomposition is just another kind of "constraint" to be satisfied by the system, and

may be applied at any appropriate time, including at run-time. For instance, run-

time action decomposition would result in planning behavior much that like displayed

by reactive systems such as PRS [3].

• A variety of temporal and causal constraints, including run-time priority constraints

such as "first-come-first-serve."

• Attainment of desired patterns of behavior expressed as regular expressions.

More details on GEMPLAN appear elsewhere [7,8,9,10]. The rest of this paper will focus on

GEMPLAN's localized search mechanism. A specific example of localized plan construction

is presented in Section 3.

2.1 Search Space Decomposition

As described earlier, a GEMPLAN domain specification is decomposed with the goal of

localizing the applicability of constraints as much as possible. For example, the construc-

tion domain depicted in Figure 1 has been partitioned into regions corresponding to the

activities of the electrician, plumber, and general contractor. These regions have been

further decomposed to include subregions that contain the activities of the electrician and

plumber at various walls as well as contractor "control" activities (these might include com-

munication actions or high-level actions that have not yet been expanded into activities

at particular walls). Each wall region would be associated with constraints and definitions

that are relevant to the actions taking place at that wall. For example, in the case of wallA,

these may include constraints relating to coordination of plumber and electrician activi-

ties. Each control region might be associated with personal communication and planning

constraints for that contractor. The electrician, plumber, and gc region constraints, which

apply to all their subregions, might describe more global requirements pertinent to their

respective activities. For example, note how the gc constraints apply to all the control

regions. These might describe how the general contractor's requests influence the control

activities of each subcontractor.

Rather than searching a single global search space, GEMPLAN creates a regional search

space for each region. Each search space is concerned with building a plan for its region

that satisfies all regional constraints. The planner may thus be viewed as a set of "mini-

planners," tied together as dictated by the structural relationships between regions.

Figure 2: GEMPLAN Search Trees

2.2 Regions

Let us assume that a domain is specified as a set of regions R1, ..., Rn. Each region R is

defined by a region description:

< actions(R), subregions(R), constraints(R), tree(R) >.

The set actions(R) consists of the types of actions that may occur directly within R (but

not within a subregion of R). The set subregions(R) consists of subregions belonging to R.

For each such subregion Ri, we use the notation Ri C R. The set constraints(R) includes

constraints that pertain to activities within R and its subregions. Finally, each region is

associated with a plan-construction search tree tree(R).

2.3 Region Search Trees

Figure 2 depicts portions of GEMPLAN planning search trees for the electrician and wallB

regions. Each tree reflects search through a space of "plan modification" operations - i.e.,

it is a plan-construction search space (rather than a domain-state search space). Each tree

node is associated with the region plan constructed up to that point in the search, and

each tree arc is associated with a plan modification or "fix" that transforms a region plan

into a new region plan. Upon reaching a node during planning search, the planner must

choose a particular regional constraint to check next. (Thus, an implicit branching factor

in the tree is the set of all relevant constraints at each node,) If the chosen constraint is

not satisfied by the plan associated with that node, constraint satisfaction algorithms or

"fixes" must be applied (there may be several fix algorithms for each constraint, as well as

8

many possible solutions or "fixes" per fix algorithm), resulting in a set of new region plans

at the next level down in the tree. A GEMPLAN fix typically adds new actions, relations,

and variable bindings to a region plan, and may also generate new subregions. Note that

fixes may add actions and relations anywhere within the plan it is working on - the precise

temporal position is determined by the nature of the constraint and fix.a

GEMPLAN uses, by default, a depth-first search strategy for searching its trees, trying

constraints in the order supplied by the domain specification and fixes in the order supplied

by GEMPLAN's internal constraint mechanism. However, since search should optimally be

driven by domain-dependent information and the structure of the plan itself, GEMPLAN

allows for flexible user-tuning of tree search. The order in which constraints and fixes

are applied can be made context dependent. GEMPLAN also includes a facility that can

determine precisely which actions affect which constraints within a region. This facility

enables only relevant constraints to be applied at each step, thereby exceeding the kind of

"frame" information already provided by constraint-localization semantics. This coupling of

localized search, where only relevant constraints are checked, with further user-tailoring of

the search, forms an extremely flexible mechanism of "relevancy-driven-search" - namely,

search driven by the most relevant constraints at any particular time in the reasoning

process.

2.4 Plan Representation

As stated above, each search tree node is associated with a region plan. Each region plan

consists of a local region plan and a set of subplan.9 (the region plans of its subregions). For

example, if R1 C R and R2 C R, the region plan for R will include a local region plan

for R and region plans for R1 and R2. GEMPLAN associates all plan information with

the smallest region that encompasses that information. The region plans of R1 and R2

will thus include all actions, temporal and causal relations, variable bindings, and other

plan information that deal exclusively with R1 and R2, respectively. The local region plan

of R will then include plan information that deals specifically with activities in R or that

pertains to relationships among R, R1, and R2 (and therefore cannot be associated strictly

with R1 or R2).

2.5 Guiding Search Among Regional Trees

Search within tree(R) is concerned with (1) assuring that all of R's constraints are satisfied

by R's region plan and (2) making sure that R's subregions' trees are searched to find

3For example, unlike some planners (typically, those those perform state-space search), actions need not

be added to the plan in an order that is in any way related to the order in which the actions are executed.

The fix algorithms may thus be viewed generically as plan modifiers that grow and refine plans in flexible

ways.

a satisfactory plan for thegr region plans. Referring back to Figure 1, it is the role of

tree(electrician) to make sure that electrician's constraints are satisfied and that tree(wallB),

tree(wallA), and tree(e-control) are aU visited when their subplans may be affected and their

constraints need to be rechec_ked.

How does control transfer among regional trees? This is done in response to informa-

tion transmitted to the search mechanism by a fix. Suppose we are in tree(R). After

applying a fix for one of R's constraints to R's region plan, the fix must return a subset

of R's subregions, R1, ..., Rm, that may have been affected by the fix. The GEMPLAN

search algorithm will then inhibit further search within tree(R) until tree(R1)...tree(Rra)

are all satisfactorily searched. As depicted in Figure 2, if electrician affects the subplan

for region wallB via the introduction of new actions there, search within tree(electrician)

cannot safely proceed until wal[B's tree is searched and its constraints are rechecked and

satisfied. Notice how shifts between parent and child regions induce a partitioning on the

child's search tree. We call these search fragments incarnations - search within the clfi]d is

"reincarnated" each time its constraints are potentially violated due to a fix in its parent's

search tree. Each incarnation is thus a subtree initiated by a parent region. In our exam-

ple, tree(wallS) may be reincarnated several times due to fixes for electrician constraints.

Each time tree(wallB) is revisited, wallB's constraints must be rechecked and satisfied. One

restriction on GEMPLAN's search control mechanism is that all search strategies (e.g.,

breadth-first, dependency-directed, etc.) must be applied within the confines of an indi-

vidual incarnation. This greatly simplifies the problem of search consistency.

As the reader may have noticed, not all regions are subregions of some enclosing region.

In the domain of Figure 1, this is true of gc, electrician, and plumber. To simplify search,

GEMPLAN requires that all tree search ultimately flows from some designated "global"

regional tree. 4 Although go. electrician, and plumber do not logically belong to another

region as far as constraint applicability, we do need to make sure that some region at

least takes "responsibility" for invoking their search trees. Thus, we include the additional

relation C, to denote this relationship, and require that each region except some designated

"global" region have a "parent" that assumes search responsibility for it. In our example, we

shall choose gc as the "global" region, with electrician C, gc and plumber C, gc. Although

tree(gc) must make sure that tree(electrician) and tree(plumber) are visited appropriately,

gc's constraints apply only to its region plan, which includes only the subregion plans of

go-control, e-control, and p-control. 5

*This does not preclude the possibility of parallel search of independent subtrees. Our research plans

include experimentation with parallel search in GEMPLAN.

s Readers of previous papers on GEM PLAN will recall that the GEMPLAN description language includes

several types of regions and modes of access between regions (elements, groups, ports, etc.). For the

purposes of this paper and for the sake of generality, we simplified the GEMPLAN structural model to

include only the relations C and Cr. The semantics of elements, groups, and ports can all be captured in

terms of C and Cr.

10

2.6 Dealing With Regional Overlap

One of the challenges of localizedsearch is keeping all regional search trees consistent

with each other. This would be fairlystraightforward if domain structure were strictly

hierarchical.However, since we allow for regional overlap, some effortis required to keep

trees consistent. For example, ifa fix in tree(electrician)affectsregion walIA's plan, it

isnot enough to simply recheck wallA'sconstraintsand return to tree(electrician).Region

plumber'srepresentationof wallA'ssubplan must alsobe updated within tree(plumber),and

search must alsooccur within tree(plumber) to recheck itsconstraints.We callthisprocess

of maintaining consistency complet{on. Because GEMPLAN allows for quite complex lo-

calizationstructures,the search algorithm must be very carefulto perform completion fully

and correctly.GEMPLAN must update allaffecteddata structures (in particular,parent

treedata) each time itcompletes searching an incarnation of a shared region. Itmust also

make sure that all affected parent region trees are ultimately reincarnated and that region

constraints are rechecked.

3 Example

In thissection,we attempt to clarifythe preceding discussionwith an example from the very

simple construction domain of Figure 1. Let us assume that the electrician,plumber, wallA,

and wallB regions are associated with the following(informallydescribed) constraints:6v

ELECTRICIAN CONSTRAINTS :

(I) action(install-socket (wallA,locA1))

(2) action(install-socket (wallB, locBl))

(3) action(install-socket (wallB, locB2))

(4) decompose (install-socket (N_L) • {N. electprep (L) => W.insertsocket (L) _)

PLUMBER CONSTRAINTS :

(I) action(install-pipe (wallA,locAl))

(2) decompose(install-pipe(W,L), {W.plumbprep(L) => W.insertpipe(L)})

WALLA CONSTRAINTS:

(I) (forall L)[(forall prep:{electprep(L),plumbprep(L)}) pattern((prep)*=>)]

(2) fcfs([[electprep,insertsocket],[plumbprep,insertpipe]])

6Tokensstartingwitha capitalletterdenotevariables.

_Thistoydescriptionisintendedforexplicatorypurposesonly.A fullGEMPLAN domain description

requiresspecificationofpotentialregionaleventtypesand domain structure,allowsforspecificationand

instantiationofregiontypes,and may includeinformationabout searchheuristicsas wellas otherkinds

ofdomain-specificinformation.

11

WALLBCONSTRAINTS :

(I) all-matching-precede (electprep. insertsocket)

The first three electrician constraints require that actions exist in the final plan that

install sockets in particular walls and locations. Such action constraints simply result in

the addition of actions to the plan. The fourth decompose constraint requires that each

install-socket(W,L) action be decomposed into an electprep action followed by an

insertsocket action at wall W, location L. Note that an action of form X.Y denotes an

action ¥ occurring at location X. The plumber constraints are similar. In this case, only

one pipe is to be installed at wallA, s

The two wallA constraints pertain to the coordination of the electrician and plumber

actions at that wall. The first constraint states that, at wallA, all electprep and plumbprep

actions at the same location follow a certain pattern - they must be totally ordered by the

temporal relation ->. The second constraint additionally requires that the electrician and

plumber have access to wallA on a first-come-first-serve basis. The constraint description

consists of a set of constraint pairs and has the following semantics: any required execution

ordering of the first actions in each pair (in this case, required orderings between "prep"

actions) will determine the ultimate ordering of the second actions in each pair (in this case,

the ordering of insertsocket and insertpipe actions). Since a total ordering is forced on

all "prep" actions at the same location, this will force electricians and plumbers who wish to

insert their devices in common locations to do so on a first-come-_st-serve basis. Finally,

walls requires that all electprep actions precede all insert socket actions. This assures

that all electrical wall-prep at walls will be completed before any electrical components are

inserted. At wallA, in contrast, prep and insertion actions may be intermingled, as long as

they conform to the two ordering constraints of wallA.

Given these constraints, we will now run through a planning scenario. We will assume

that all constraints are imposed strictly in advance of execution. In more realistic planning

scenarios we have implemented, some constraints (like those of waliA) may be applied also

at run-time. The discussion below will describe the train of reasoning GEMPLAN would

go through to create the construction plan depicted in Figure 3.

Reasoning begins at the "global" region gc, which in this case has no constraints of its

own, but is responsible for invocation of the electrician and plumber search trees. Let us

assume that electrician is invoked first. Constraints 1, 2, and 3, are satisfied by adding the

specified install-socket actions to the electrician plan. Constraint 4 then decomposes

these three actions into the appropriate electprep and insertsocket actions at wallA and

wallB. This causes changes in the wallA and walls subplans of electrician. Before search

SSince this simple scenario does not contain constraints that force the electrician activities (nor plumber

activities) to be totally ordered, let us assume, for the sake of realism, that electrician models a set of

electricians (and similarly for plumber). In the GEMPLAN construction domain application discussed in

Section 6, multiple contractors are indeed used. The planner creates a suitable construction plan given any

number of available contractors, performing contractor allocation as planning proceeds.

12

install-socket (wallA, locA 1)

install-pipe (calla, local)

wallA, electprep (locAl)

-/_ wallA .plumbprep(locll)

==_ wallA, insert socket (locAl)

wallA, insertpipe (locAl)

install-socket (wallB, locB1)

install-socket(wallB,locB2)

wallB.electprep(locB1) _ wallB.insertsocket(locB1)

>
wallB, electprep (locB2) = wallB, insertsocket (locB2)

Figure 3: A Construction Plan

continues within _ree(electrician), search within tree(wallA) and tree(wallB) must occur.

Let us assume that wa][A is searched first. Both wallA constraints are checked, but both are

satisfied at this point. The newly completed incarnation of watlA therefore does not add

any new information to the subplan for wallA associated with electrician, but the process

of comple_ion causes the new version of the wallA plan (that includes the changes made by

electricia n) to be inserted appropriately into nodes of tree(pin tuber).

Then _ree(wa[IB) is searched. The wa]]B constraint causes the relations electprep (locB1)

=> insertsocket (locB2) and electprep(locB2) => insertsocket (loeB1) to be added.

Search then returns to electrician, and the electrician's subplan for wallB is appropriately

updated. Note that wallB is not a region of overlap, so no other completion operation need

occur.

At this point, all electrician constraints are satisfied. Search then bounces back to

go, which invokes search in tree(plumber). The plumber constraints cause the addition of

the install-pipe action and its decomposition into the appropriate subactions at wallA.

After fixing the second plumber constraint, search must occur for the affected wallA re-

gion. This causes the actions eXectprep(locA1) and plumbprep(locA1) to be forced

into some total order (in Figure 3, electprep(locA1) -> plumbprep(locA1) was cho-

sen) and then, as a result of the second wallA constraint, a similar ordering is imposed

on ±nsertsocket (locAl) and insertpipe(locA1). The now satisfied wallA plan is ap-

propriately inserted into both *tee(electrician) and _ree(plumber) (due to the completion

process). All #umber constraints are now satisfied and search bounces back to go. The

constraints within electricia n are then rechecked (due to the changes at waHA), but they are

still satisfied. Search then terminates successfully.

4 Localized Search Algorithm

This section describes the localized search algorithm in a bit more detail.

detailed account can be found in [11].

An even more

13

The procedure below describes how search is conducted within a region incarnation

search tree. As described earlier_ each incarnation is a search tree fragment initiated by a

parent-region search tree. It is clear that the designated "global" region will only have one

incarnation.

PROCEDURE search(RegionIncarnation,IncarnationResult);

Node := select_first_node(RegionIncarnation);

UNTIL satisfied(Node) or failure(Node) or stop(Node) DO

apply.constraint_and_fix(Node,Result,TempNewNode,

AffectedSubregions);

IF failure(Result) THEN

NextNode := select_next_node(Node)

ELSE

{ check_affected_subregions(TempNe.Node,AffectedSubregions,

SubregionsResult,Ne.Node);

IF failure(SubregionsResult) THEN

NextNode := select_next_node(Node)

ELSE

NextNode := select_nexZ_node(NewNode) }

Node := NexrNode }

IF not(failure(Node)) THEN do_completion(Node);

IncarnationResult := Node }

While searching within an incarnation for a region R, GEMPLAN requiresfor

0 0 TD

-268 -1ect_nexZ_node(NewTD (IF) Tj 16 0 TDTj

0 0 TD

-461 -18 TDsulfinysearch search

searchf Tj 4tsearchinitimak (for)fragment(search) Tjthesearch search fon in48 -16 TD for Rns 48 0c8 Tf

61 -18 TD17 0D

-151 -32 TDa41 -32 T (the) Tj 2oftheincarna5:=

PTD

-295 -16 TDsearD (}) T-461 -18 TDsult,TeiTjssearch

j j

0 Tj 4t Tj 59 02h

typicanlyD

-15(tree)

-449 -14 a4(tree) Tofcpreviou (for)40 TD (f-461 -18 TD0 -31 TD (PTD

-295 -16 TDaugm Tjed 0 TD64an) Tj(search) Tjby)(sear Tj 4t) Tj 12 0 TDnewj

0 Tf

(incarna6:=) Tj 1jplan(for)28 Tf

(in TDmTD (PTD

-20 TD (f)supplied 0 TD4on) Tj 3by)(sear8 Tf

(Tj 59 02h) Tj 3par Tj 48 0c1 -32 T (the) Tj 2

(R,) Tj 188 Tf

61 -18 TDwNoy) Tj 4ansea

-268 -1ect_9ck_affectduTD

-150 TD (fo o53 0 TD (}) T-4earch) Tjback,Teck 39),D

-178 Tf

61 -18 TD

P.TD

-20 TD (f)T isyforsmight 0 TD ch

Next, search proceeds from that node, repeatedly choosing constraints, applying fixes,

and visiting new nodes until a node is reached in which either: all constraints have been

satisfied (satisfied(Node)), there remain constraints to be satisfied but no possible fix

works (failure(Node)), or search has for some reason been told to stop (stop(Node)).

This last option is useful because heuristics might determine that it is best to wait and

see if a later incarnation can provide a situation in which remaining constraints can be

satisfied more easily. The function select_next_node is given a node and selects a new

node from which to search. Together with select_first_node, it implements the search

strategy within an incarnation.

The procedure apply_constraint_and_fix utilizes the current state of Node to decide

whether to:

1. Select a new constraint to check and, if it is not satisfied, apply a fix to obtain a

resulting TempNewNode (this will occur the first time Node is visited);

2. Retry a new fix for a particular constraint or try checking a different constraint (this

may occur upon backtracking to Node);

3. Backtrack within subregional incarnations (this may occur if search backtracks to

Node and Node induced search at subregional trees);

4. Backtrack within this incarnation (nothing remains to be done at Node); or

5. Stop further search in the incarnation, resulting in stop(Node).

As shown, procedure apply_constraint.and.fix returns a set Affect edSubregions,

all of whose subtrees must be visited in order to successfully proceed. The procedure

check_affected_subregions takes a list of subregions R1...P_, forms incarnations for

them, and searches these incarnations in sequence. If search within R_ fails, R__l's in-

carnation will be retried to find an alternate plan, after which P_'s initial incarnation

will be started again. If no combination of incarnations for the subregions can be found,

SubregionResult will indicate failure. Note that the subregion incarnations will be re-

tried only in the order returned by apply_constraint_and.fix. Thus, the search is not

complete - i.e., it doesn't invoke the subregional trees in all possible orders. We chose

this strategy in order to allow the constraint-£ucing algorithms to provide heuristic search

guidance by forcing a particular ordering on subregional checking. Note that TempNewNode

will be updated to become NewNode, which reflects changes within the subregions due to

search within the subregional trees.

Finally, we have the completion operation do_completion. When search within an in-

carnation for region R is successfully terminated or stopped, all changes for that region must

be reflected within every ancestor region P whose tree stores information about R. Com-

pletion involves an appropriate update of subplans for R within P's region plan at relevant

15

nodes in tree(P), as well as an update of other relevant information about R stored at these

nodes. Assuming that the final plan for R's preceding incarnation was Rplanl, the nodes to

be updated will be precisely those that have information about Rplan_. As stated earlier,

maintenance of search consistency is trickier than meets the eye. For example, completion

must be coordinated with the data structures utilized by check.affected._ubregions. If

Ri and Ri + 1 share a subregion S and search within Ri affects S, completion for S must

occur in Ri + l's tree before search proceeds there.

5 Complexity Analysis

It is clear that no general definitive complexity result can be given for localized search - the

size and complexity of the planning search trees for a particular problem will depend on

the structure of the domain, the constraints associated within each region, the complexity

of their satisfaction algorithms, the domain search heuristics, and the peculiarities of the

specific domain problem being solved. In order to provide some theoretical estimate of

the benefits of localized search, however, we provide an idealized analysis of search for

a domain with a very simple locality structure. We provide best- and worst-case search

costs, assuming that constraint algorithms are either all constant, linear, quadratic, or

exponential in cost (obviously, most domains will have a mixture of these). Although our

analysis is quite idealized, it correlates with the empirical results of Section 6. The reader

should also note that, for most of our empirical tests, search has been very close to best-case

- i.e., our tests have exhibited very little backtracking. In general, best-case behavior can

be expected if good domain search heuristics are employed.

To formally and empirically assess the benefits of localized search, we must compare it

with completely non-localized search. For our formal complexity analysis, we utilize the

non-localized and localized domain configurations depicted in Figure 4. For both domains

we assume a total of nc constraints, that each constraint has n! possible fixes, and that

the total number of actions in the final plan is s. The cost of checking any constraint

on a plan of size j is c(j) and the cost of fixing a plan of size j is/(j). For the localized

case, we assume that the domain has been localized to form a configuration of m subregions

R1...P_ and a region G. The actions in the final plan are divided equally among the regions

R1...P_, so that each builds a plan of size _.° Each of the R1...R,, regions also contains

a subregion consisting of k actions that overlaps with region G. Thus, G's region plan

consists of mk actions. The nc constraints of the original problem are evenly distributed

among G, -R1, ...R,_ so that each region is associated with _,,,+1 constraints.

Let us now consider the cost of a generic region search tree. Let us assume that, for

a region i, there are n_ constraints, that each constraint has n! fixes, and that the final

size of the region plan is 81. Because a constraint fix may always, in principle, violate

previous constraints that may have been satisfied, constraints may need to be repeatedly

16

ne constraints

n! fixes

, plan size

--" repeat factor
_,¢

Non-Localized

l
constraints

fixes

m+l

nl
J.
_gL

tTL_¢

R1

mk

mk(,_+1)
_,¢

...°

c_ nstraint 5

fi :es

plan size

re peat fa¢ ;or

Rm

Localized

plan size

repeat factor

Figure 4: Non-localized and Localized Domains

checked and fixed. The search thus tends to take the form of a round-robin checking of

constraints. We call the number of times the search must cycle through the constraints

the search "repeat factor." Assuming that our sample region has a repeat factor of ri, its

tree depth is fine,, with average depth to adding an action being _ (Thus, we assume
81 "

that at most one action is added per fix. In most realistic domains, many actions are often

added per fix.)

To calculate search cost, we assume an implicit search space that alternately branches

due to choice of a constraint (the costs c(j) accumulated due to constraint testing) and

choice of a fix (the costs f(j) accumulated due to constraint fixing). By "best-case search"

we mean depth-first search without backtracking - i.e., the cost of one path from the root

to the leaves of the search space. The cost of best-case search for region i is

",_e, (cCj) + fCj)).

In contrast, worst-case search cost measures the cost of searching the entire space. For

our sample region i this cost is

E n_,nit -lcCCj- 1) divrlne')+n_'nilfC(J- 1) div vine,).
si sl

l _ j_rin¢ i

We shall now compare the complexity of these formulae for the non-localized and local-

ized cases. For each case, we must assume a repeat factor for each region. In general, this

17

will be a function of the size s_ of the region plan and the number of constraints for that

region no,. For this analysis, we will set the repeat factor rl to be _ - that is, we assume
nc i

that exactly one action is added per fix, that the size of the plan is larger than the number

of constraints, and that the depth of the region tree is equal to the number of actions in

the region plan. In most of our test situations, however, the repeat factor tends to be less

than this number, with more actions added per fix and, of course, some subset of actions

being added by overlapping regions. Moreover, less rechecking needs to be done due to

tuning of constraint application. On the other hand, some amount of additional rechecking

tends to occur due to the completion process - i.e., rechecking required due to regional

overlap. Thus, our assumption of a repeat factor of _ may be only slightly pessimistic.

Given this formulation, the repeat factor for the completely non-localized case will be *--.

For the localized case, we have a repeat factor of _-'_k _ _ for region G and a repeat
m+l ne

factor of ±/_--_-- = _ for each of the R1..._ regions.
I m+l _ne

The complexities of all cases are summarized in the tables below. We provide best- and

worst-case search results, assuming that the complexity of c(i) and f(i) are both constant,

linear, quadratic, or exponential. In some cases we supply only a leading term. For all

of the localized search cases, we add to the total cost of the search trees an additional

completion cost C. For this analysis, we shall assume that completion occurs each time an

action is added within a region of overlap Q. The cost of each completion operation will

be a function of the number of additional regions that include Q (this will not include the

region actually adding the action to Q) and the size of the plan data structure for each of

those regions (since completion involves update of of this data structure). In GEMPLAN,

the size of the plan data structure is a function of the number of regions in the plan - in

this case m + 1. So for this problem, we shall assume a completion cost C = mk(m + 1) or

O(m2k).

complexity of Non-Localized Localized

c(i) and f(i) (best-case) (bea-case)
constant (b) 2bs 2b(s + ink) + C

linear (ib)

quadratic (i 2)

exponential (b i) 2(mb_ + b""k) + C

complexity of Non-Localized Localized

c(i) and f(i) (worst-case) (worst-case)

constant (b) b(ncnt) °

b(e C
2-_+ +(ink)3) c_(_-_+ +

2b o

linear (ib)

quadratic (i 2) s'(n_nt) °

exponential (b i) (bn_nl) °

18

As can be seenin the tables, localized search is, in general, always better than non-

localized search - in most cases significantly better. The only real exceptions are in the

case of constant-complexity best-case search or when the cost of completion overshadows

the cost of the search itself. The amount by which localized search wins over non-localized

search is proportional to the amount by which 8 dominates both _ (the size of each of

the subregions R1...R,_) and mk (the size of G). Thus, increased decomposition is always

worthwhile, except for the cost of increased amounts of overlap (which is reflected in the

size of mk and the cost of completion C).

The overall gains of localized search increase as the complexity of the constraint algo-

rithms increases and the bushiness (size) of the search space increases. These gains can be

understood to come from three sources:

o The absolute size of the localized search space is generally smaller that the non-

localized search space. This becomes increasingly true as the bushiness of the search

space (the amount of backtracking) increases.

. The cost of localized search is cheaper than non-localized search, even if the absolute

size of the search space is the same. This is because expensive constraint algorithms

are applied to much smaller local plans.

. The search heuristics provided by localization provide excellent guidance by helping

the planner apply the most relevant constraints at a given time. Thus, the overall

branchiness of localized search may be decreased simply by virtue of the good search

heuristics provided by localization.

6 Empirical Results

All of our empirical experiences with GEMPLAN certainly bear out the efficacy of localized

search. Our largest application so far is for a building-construction domain. This domain

includes multiple instances of each type of contractor as well as multiple walls and footings

to which these contractors must be allocated. The problem thus manifests both resource

allocation and temporal coordination of access to building components. The apphcation

was used to test a variety of localization configurations, including some that were fairly

complex, involving both a great deal of hierarchy and overlap.

The empirical tests with the construction domain have shown universal performance

improvement with localized search. Even though planning for this domain manifested

best-case search in both the localized and non-localized test decompositions (there was no

backtracking), GEMPLAN attains speedups of greater than 50% using the best decom-

position. This speedup can thus be attributed largely to the second factor described in

the previous section - i.e., the simple reduction in the cost of the constraint algorithms.

19

Even greater speedups can thus be expected for more complex domains with bushier, more

complex search spaces.

The tables below provides timing results for the construction domain (on a SPARC

workstation). The "number of regions" column gives the total number of regions that have

at least one constraint and one action in the final plan. The "overlap size" column gives

a sum of size measures for each region of overlap. For each such region, its "size" is the

number of actions in the region multiplied by the number of times it occurs within another

region. For instance, in the domain of Figure 1, e-control, p-control, and wallA each occur

twice within a parent region. If each region has a total of 2 actions within its plan, the

domain's total overlap size would be 12. The overlap size column gives a good idea of

how expensive the completion process is and the amount of rechecking that is required

due to regional overlap . The "largest region" column gives a pair of numbers < number

of constraints, number of actions> for the region with the largest number of constraints

(wlfich, in this case, is usually also the region with the largest number of actions). This

measure gives an idea of how big the largest search space in the domain is - i.e., the region

space in which the most search will be conducted.

The two tables below provide results for the creation of a 49-action construction plan

and a 97-action construction plan. Both used the same basic domain decomposition, with

the 97-action plan simply having more walls, contractors, etc. Within each table, the first

test case is for a non-localized version of the domain - all constraints are applied globally.

The localized(I) test configuration is highly decomposed but also has significant amounts of

overlap between regions. The localized(2) case has less localization and much less overlap.

Case localized(3) has an intermediate level of both localization and overlap, and attains the

best results in both cases. Interestingly, these results jibe with our formal analytical results;

increased localization provides increased benefit, except for the added expense caused by

with regional overlap. However, notice that, in the 97-a_tion case, localized(l) is faster

than localized(2). This shows how, as plan size increases, the cost of dealing with overlap

is overshadowed by the shear size of the planning space itself.

test case (49 actions) number of regions overlap size largest region CPU Seconds

non-localized 1 0 <40,49> 113.81

localized (1) 24 134 <4,16 > 85.78

localized (2) 16 32 < 15,28> 79.23

localized(3) 19 76 <8,17> 62.95

test case (97 actions) number of regions overlap size largest region CPU Seconds

non-localized 1 0 <52,97> 905.98

37 236 524.97localized(l)

localized(2) 28 32

31 102localized(3)

<7,34>

<24,58> 725.43

442.43<8,24>

2O

7 Conclusion

This paper has described a general-purpose technique for localized search, as well as com-

plexity results and empirical test results that illustrate how localized reasoning can provide

substantial gains in performance. I strongly believe that the principal of domain localiza-

tion can be used by a wide variety of reasoning mechanisms. The idea is quite intuitive

and natural, but has, surprisingly, not been a fundamental aspect of most AI systems.

Its application to planning is vital if such systems are to meet the requirements of large,

complex domains.

Acknowledgments

Lode Missiaen helped to design and implement GEMPLAN's localized search algorithm. I

would also like to thank Anna Karlin for her assistance with the complexity results. John

Bresina, Megan Eskey, Mark Drummond, Monte Zweben, Lode Missiaen, and Guy Boy

also provided astute advice towards improving the quality of this paper.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Bresina, J., Marsella, S. and C. Schmidt. "Predicting Subproblem Interactions," Tech-

nical Report LCSR-TR-92, LCSR, Rutgers University (February 1987).

Chapman, D. "Planning for Conjunctive Goals," Masters Thesis, Technical Re-

port MIT-AI-TR-802, MIT Laboratory for Artificial Intelligence, Cambridge, Mas-

sachusetts (1985).

Georgeff, M.P. and A.L. Lansky. "Reactive Reasoning and Planning," in Proceedings

of the Sizth National Conference on Artificial Intelligence (AAAI-87), Seattle, Wash-

ington (1987).

Hayes, P.J. 1973. The Frame Problem and Related Problems in Artificial Intelligence.

In Artificial Intelligence and Human Thinking. Edited by A. Ehthorn and D. Jones.

Jossey-Bass, Inc. and Elsevier Scientific Publishing Company, pp. 45-59.

Knoblock, C.A. "Learning Abstraction Hierarchies for Problem Solving," in Proceed-

ings of the Seventh International Workshop on Machine Learning, pp. 923-928 (1990).

Korf, R.E. "Planning as Search: A Quantitative Approach," Artificial Intelligence,

Volume 33, Number 1, pp. 65-88 (1987).

Lansky, A.L. "Localized Representation and Planning," in Proceedings of the 1989

Stanford Spring Symposium, Workshop on Planning and Search (March 1989).

21

[8]

[9]

[io]

[11]

[12]

[13]

Lansky, A.L. "Localized Event-Based Reasoning for Multiagent Domains," Computa-

tional Intelligence Journal, Special Issue on Planning, Volume 4, Number 4 (1988).

Lansky, A.L. "A Representation of Parallel Activity Based on Events, Structure, and

Causality," in Reasoning About Actions and Plans, Proceedings of the 1986 Work-

shop at Timberline, Oregon, M. Georgeff and A. Lansky (editors), Morgan Kaufmaun

Publishers, Los Altos, California, pp. 123-160 (1987).

Lansky, A.L. and D.S. Fogelsong, 1987. "Localized Representation and Planning Meth-

ods for Parallel Domains," in Proceedings of the Sizth National Conference on Artificial

Intelligence (AAAI-87), Seattle, Washington, pp. 240-245 (1987).

Missiaen, L. "Localized Search," Technical Note 476, ArtificialIntelligenceCenter, SRI

International,333 Ravenswood Ave. Menlo Park, California94025 (November 1989).

'rate, A. "Project Planning Using a Hierarchical Nonlinear Planner," Department of

Artificial Intelligence Report 25, University of Edinburgh (1976).

Wilkins, D.E. 1984. Domain-independent Planning: Representation and Plan Gener-

ation. Artificial Intelligence, Volume 22, Number 3, pp. 269-301.

22

